Lifting and recombination techniques for absolute factorization

نویسندگان

  • Guillaume Chèze
  • Grégoire Lecerf
چکیده

In the vein of recent algorithmic advances in polynomial factorization based on lifting and recombination techniques, we present new faster algorithms for computing the absolute factorization of a bivariate polynomial. The running time of our probabilistic algorithm is less than quadratic in the dense size of the polynomial to be factored.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Osculation and Factorization of Sparse Polynomials

We prove a theorem on algebraic osculation and we apply our result to the Computer Algebra problem of polynomial factorization. We consider X a smooth completion of C and D an effective divisor with support ∂X = X \ C. Our main result gives explicit conditions equivalent to that a given Cartier divisor on the subscheme (|D|,OD) extends to X. These osculation criterions are expressed with residu...

متن کامل

Sharp precision in Hensel lifting for bivariate polynomial factorization

Popularized by Zassenhaus in the seventies, several algorithms for factoring polynomials use a so-called lifting and recombination scheme. Concerning bivariate polynomials, we present a new algorithm for the recombination stage that requires a lifting up to precision twice the total degree of the polynomial to be factored. Its cost is dominated by the computation of reduced echelon solution bas...

متن کامل

A lifting and recombination algorithm for rational factorization of sparse polynomials

We propose a new lifting and recombination scheme for rational bivariate polynomial factorization that takes advantage of the Newton polytope geometry. We obtain a deterministic algorithm that can be seen as a sparse version of an algorithm of Lecerf, with now a polynomial complexity in the volume of the Newton polytope. We adopt a geometrical point of view, the main tool being derived from som...

متن کامل

Factoring bivariate polynomials using adjoints

We relate factorization of bivariate polynomials to singularities of projective plane curves. We prove that adjoint polynomials of a polynomial F ∈ k[x, y] with coefficients in a field k permit to recombinations of the factors of F (0, y) induced by both the absolute and rational factorizations of F , and so without using Hensel lifting. We show in such a way that a fast computation of adjoint ...

متن کامل

Factorization of Polynomials by E. Kaltofen Abstract Algorithms for factoring polynomials in one or more variables over various coefficient

Algorithms for factoring polynomials in one or more variables over various coefficient domains are discussed. Special emphasis is given to finite fields, the integers, or algebraic extensions of the rationals, and to multivariate polynomials with integral coefficients. In particular, various squarefree decomposition algorithms and Hensel lifting techniques are analyzed. An attempt is made to es...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Complexity

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2007